In this Python tutorial, we will discuss **matplotlib rotate tick labels** in python. And we will also cover the following topics:

- Matplotlib rotate tick labels
- Matplotlib rotate tick labels example
- Matplotlib rotate tick labels x-axis
- Matplotlib rotate tick labels y-axis
- Matplotlib rotate tick labels date
- Matplotlib rotate tick labels colorbar
- Matplotlib rotate tick labels 45 degrees
- Matplotlib rotate tick labels 90 degrees
- Matplotlib rotate tick labels alignment

**Table of Contents**show

## Matplotlib rotate tick labels

- In python, matplotlib is one of the best libraries used for data visualization.
- Matplotlib library provides the functionality to customize the tick labels according to our choice.
- It provides the feature to rotate tick labels.

Firstly let’s understand what does ticks labels means:

- The markers representing data points on the axes are known as “
**Ticks**“. - And the name given to the markers is called “
**Ticks Labels**“.

Matplotlib by default marks the data points on the axes, but it also provides us the feature to make settings of ticks and ticks label according to our choice.

In this section, we are going to learn about the rotation of tick labels.

**The following steps are used to rotate tick labels in matplotlib which are outlined below:**

**Defining Libraries:**Import the important libraries which are required for the rotation of the tick labels (For visualization: pyplot from matplotlib, For data creation and manipulation: NumPy and Pandas).**Define X and Y:**Define the data values on X-axis and Y-axis.**Plot a graph:**By using the**plot()**method or any other method available for plotting you can plot the graph.**Rotate tick labels:**By using**x.ticks()**and**y.ticks()**method we can rotate tick labels.**Display:**At last display the plot by using the**show()**method.

**The syntax to rotate tick labels is as below:**

**For X-axis labels
**
matplotlib.pyplot.xticks(ticks=None, labels=None, rotation=None, ......)
**For Y-axis labels**
matplotlib.pyplot.yticks(ticks=None, labels=None, rotation=None, ......)

**The above-used parameters are outlined as below:**

**ticks:**It is an array-like structure. It specifies the list of xtick or ytick locations.**labels:**specifies labels to place at the given ticks locations. It is an array-like structure.**rotation:**specifies the angle of rotation.

Also, learn: How to install matplotlib python

## Matplotlib rotate tick labels examples

In the above sections, we discussed what do we mean by tick labels and the syntax for rotation of tick labels.

**Let’s understand the concept for rotation of tick labels with the help of an example as below:**

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data**
x = [2, 4, 6, 8]
y = [7, 14, 21, 28]
**# Create Plot**
plt.plot(x, y, color='red')
**# Rotate tick labels**
plt.xticks(rotation=30)
**# Display graph**
plt.show()

- In the above example, we import
**matplotlib. pyplot**library. After this, we define data points of the x-axis and y-axis. **plt.plot()**method is used for the creation of the graph.**plt.xticks()**method is used for rotation of ticks labels at the x-axis. Here we pass the**rotation**parameter and set the rotation angle**30 degrees**.

**Conclusion!** x-labels rotate at an angle of 30 degrees.

Read: Python plot multiple lines using Matplotlib

## Matplotlib rotate tick labels x-axis

In this section, we will learn how to rotate X-axis tick labels.

**There are two ways to rotate the x-axis:**

**plt.xticks():**rotate on figure level.**tick.set_rotation():**rotate on axes level.**ax.set_xticklabels():**rotate on axes level.**ax.tick_params()**

### Matplotlib rotate x-axis tick labels on figure level

For rotation of tick labels on figure level, firstly we have to plot the graph by using the **plt.plot()** method.

After this, we have to call **plt.xticks()** method and pass the **rotation** argument and set their value as per your choice.

**The syntax to change the rotation of x-axis ticks on figure level is as below:**

`matplotlib.pyplot.xticks(rotation=)`

**The above-used parameters are described below:**

**rotation:**to set angel for rotation.

**Let’s see how rotation on figure level works with an example:**

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data**
x = [2, 4, 6, 8]
y = [7, 14, 21, 28]
**# Create Plot**
plt.plot(x, y, color='red')
**# Rotate tick labels**
plt.xticks(rotation=175)
**# Display graph**
plt.show()

In the above example, we plot the graph by using **plt. plot()** method and after that, we call **plt.xticks()** method and set the angle of rotation at **175 degrees**.

### Matplotlib rotate x-axis tick labels on axes level

For rotation of tick labels on figure level, firstly we have to plot the graph by using the **plt.draw()** method.

After this, you have to call the **tick.set_rotation() **method and pass the **rotation **angle value as an argument.

**The syntax to change the rotation of x-axis ticks on axes level is as below:**

`matplotlib.pyplot.set_ticks(rotation angle)`

**The above-used parameters are described below:**

**rotation angle:**to set angel for rotation to move x-axis labels.

**Let’s see how rotation on axes level works with an example:**

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data**
x = [2, 4, 6, 8]
y = [7, 14, 21, 28]
**# Create Plot**
plt.plot(x, y, color = 'm')
ax = plt.gca()
**# Call draw function**
plt.draw()
**# Tick rotation on axes**
for tick in ax.get_xticklabels():
tick.set_rotation(63)
**# Display graph**
plt.show()

In the above example, firstly we call the **draw()** method and after this use for loop and **tick.set_rotation()** method and set angle of rotation **63 degree**.

### Matplotlib rotate x axis tick labels by using ax.set_xticklabels() method

Another way to rotate X-axis tick labels is using the **ax.set_xticklabels()** method. Before this, you have to get the current axes of the object.

Remember before calling this method you’ll have to call **plt.draw()** method.

**The syntax for the above method is given below:**

`ax.set_xticklabels(ax.get_xticks(), rotation =)`

**Let’s understand the concept with the help of an example:**

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data**
x = [2, 4, 6, 8]
y = [7, 14, 21, 28]
**# Create Plot**
plt.plot(x, y, color = 'orange')
ax = plt.gca()
**# Call draw function**
plt.draw()
**# Tick rotation on axes**
ax.set_xticklabels(ax.get_xticks(), rotation = 10)
**# Display graph**
plt.show()

In the above example, firstly we call the **plt.draw()** method, and then we **ax.set_xticklabels()** method and set rotation angle to **10 degrees**.

### Matplotlib rotate x-axis tick labels by using ax.tick_parmas()

Another way to rotate x-axis tick labels is using the **ax.tick_parmas()** method. Before this, you have to get the current axes of the object.

**The syntax for this method is given below:**

`ax.tick_params(axis=None, labelrotation= None)`

**The above-used arguments are outlined below:**

**axis:**specifies the axis in which you want rotation.**labelrotation:**specifics angle of rotation.

**Let’s understand the concept with the help of an example:**

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data**
x = [2, 4, 6, 8]
y = [7, 14, 21, 28]
**# Crate Plot**
plt.plot(x, y, color = 'orange')
ax = plt.gca()
**# Rotate x-axis labels
**
ax.tick_params(axis='x', labelrotation = 45)
**# Display graph**
plt.show()

In the above example, we use the **ax.tick_params()** method and pass “**axis”** as argument and set their value to be **“x”** and also pass **“labelrotation**” as argument and set their value to be **45**.

Read: Matplotlib plot a line

## Matplotlib rotate tick labels Y-axis

In this section, we will learn how to rotate Y-axis tick labels.

**There are two ways to rotate the y-axis:**

**plt.yticks():**rotate on figure level.**tick.set_rotation():**rotate on axes level.**ax.set_yticklabels():**rotate on axes level.**ax.tick_params()**

### Matplotlib rotate y-axis tick labels on figure level

For rotation of tick labels on figure level, firstly we have to plot the graph by using the **plt.plot()** method.

After this, we have to call **plt.yticks()** method and pass the **rotation** argument and set their value as per your choice.

**The syntax to change the rotation of y-axis ticks on figure level is as below:**

`matplotlib.pyplot.yticks(rotation=)`

**The above-used parameters are described below:**

**rotation:**to set angel for rotation.

**Let’s see how rotation on figure level works with an example:**

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data**
x = [2, 4, 6, 8]
y = [7, 14, 21, 28]
**# Create Plot**
plt.plot(x, y)
**# Rotate tick labels**
plt.yticks(rotation=63)
**# Display graph**
plt.show()

In the above example, we plot the graph by using **plt. plot()** method and after that, we call **plt.yticks()** method and set the angle of rotation at **63 degrees**.

**Conclusion!** Y-axis tick labels rotate at an angle of 63 degree.

Read: What is matplotlib inline

### Matplotlib rotate y-axis tick labels on axes level

For rotation of tick labels on figure level firstly you have to plot the graph by using the **plt.draw()** method.

After this, you have to call the **tick.set_rotation() **method and pass the **rotation **angle value as an argument.

**The syntax to change the rotation of y-axis ticks on axes level is as below:**

`matplotlib.pyplot.set_ticks(rotation angle)`

**The above-used parameters are described below:**

**rotation angle:**to set angel for rotation to move y-axis labels.

**Let’s see how rotation on axes level works with an example:**

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data**
x = [2, 4, 6, 8]
y = [7, 14, 21, 28]
**# Create Plot**
plt.plot(x, y, color = 'm')
ax = plt.gca()
**# Call draw function**
plt.draw()
**# Tick rotation on axes**
for tick in ax.get_yticklabels():
tick.set_rotation(63)
**# Display graph**
plt.show()

In the above example, firstly we call the **draw()** method and after this use for loop and **tick.set_rotation()** method and set angle of rotation **23 degree**.

**Conclusion!** Y-axis labels rotate at an angle of 23 degrees.

### Matplotlib rotate Y axis tick labels by using ax.set_yticklabels() method

Another way to rotate Y-axis tick labels is using the **ax.set_yticklabels()** method. Before this, you have to get the current axes of the object.

Remember before calling this method you’ll have to call **plt.draw()** method.

**The syntax for the above method is given below:**

`ax.set_yticklabels(ax.get_yticks(), rotation =)`

**Let’s understand the concept with the help of an example:**

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data**
x = [2, 4, 6, 8]
y = [7, 14, 21, 28]
**# Create Plot**
plt.plot(x, y, color = 'orange')
ax = plt.gca()
**# Call draw function**
plt.draw()
**# Tick rotation on axes**
ax.set_yticklabels(ax.get_yticks(), rotation = 10)
**# Display graph**
plt.show()

In the above example, firstly we call the **plt.draw()** method, and then we **ax.set_yticklabels()** method and set rotation angle to **10 degrees**.

### Matplotlib rotate Y-axis tick labels by using ax.tick_parmas()

Another way to rotate Y-axis tick labels is using the **ax.tick_parmas()** method. Before this, you have to get the current axes of the object.

**The syntax for this method is given below:**

`ax.tick_params(axis=None, labelrotation= None)`

**The above-used arguments are outlined below:**

**axis:**specifies the axis in which you want rotation.**labelrotation:**specifics angle of rotation.

**Let’s understand the concept with the help of an example:**

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data**
x = [2, 4, 6, 8]
y = [7, 14, 21, 28]
**# Crate Plot**
plt.plot(x, y, color = 'orange')
ax = plt.gca()
**# Rotate y-axis labels
**
ax.tick_params(axis='y', labelrotation = 45)
**# Display graph**
plt.show()

In the above example, we use the **ax.tick_params()** method and pass “**axis”** as argument and set their value to be **“y”** and also pass **“labelrotation**” as argument and set their value to be **45**.

Read: Matplotlib plot bar chart

## Matplotlib rotate tick labels date

The reason behind the rotation of the tick labels is overlapping. Mostly, the date ticks are long in size and start to overlap. To avoid this condition we rotate the date tick labels.

- To avoid the overlapping of dates on the x-axis we use the
**fig.autofmt_xdate()**method. - This method automatically set the rotation of dates and tune the x-axis or you can also set the rotation angle of yours choice.

**The syntax for rotation of dates on x-axis:**

`matplotlib.figure.Figure.autofmt_xdate(bottom=0.2,roation=10,ha='left',which=None)`

**The following parameters are used in the above function which is** **outlined** **below:**

**bottom:**specifies the bottom of the plot.**rotation:**specifies rotation angle.**ha:**specifics horizontal alignment.**which:**specifies which tickable to rotate.

**Let’s understand the concept with the help of an example:**

**Code#1**

Here is code without the **autofmt_xdate()** method.

**# Import Libraries**
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
**# Define Dates**
dates = [
datetime(2021, 10, 21),
datetime(2021, 7, 24),
datetime(2021, 8, 25),
datetime(2021, 10, 26),
]
y = [2, 4, 4.5, 6]
**# Plot Dates**
fig = plt.figure()
plt.plot_date(dates, y, linestyle= 'dashed')
**# Display Graph**
plt.show()

In the above code, we simply create data consist of dates on the x-axis and plot them.

**Conclusion!** The problem of overlapping caused. To remove this follow Code#2

**Code#2**

```
```**# Import Libraries**
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
**# Define Dates**
dates = [
datetime(2021, 10, 21),
datetime(2021, 7, 24),
datetime(2021, 8, 25),
datetime(2021, 10, 26),
]
y = [2, 4, 4.5, 6]
**# Plot Dates**
fig = plt.figure()
plt.plot_date(dates, y, linestyle= 'dashed')
**# Rotate dates on x-xis**
fig.autofmt_xdate()
**# Display Graph**
plt.show()

In the above code, we create data consist of dates on the x-axis, and then we use the **autofmt_xdate()** method to avoid overlapping or to rotate dates on the x-axis.

**Conclusion!** The problem of overlapping resolve by rotating the x-axis.

Read: Matplotlib subplot tutorial

## Matplotlib rotate tick labels subplot

Sometimes we have multiple subplots in a figure area. And we want to customize only one subplot axis or rotate the axis of a specific subplot.

In that case, we use the method **set_xticklabels()** for rotation of the axis.

**The syntax for this is given below:**

`matplotlib.axis.Axis.set_xticlabels(labels=, rotation=)`

**The above-used parameters are described below:**

**labels:**set labels for rotation.**rotation:**specifies the angle of rotation.

**Let’s clear the concept by example:**

**# Importing Libraries**
import numpy as np
import matplotlib.pyplot as plt
**# Define Data
**
x1= [0.2, 0.4, 0.6, 0.8, 1]
y1= [0.3, 0.6, 0.8, 0.9, 1.5]
x2= [2, 6, 7, 9, 10]
y2= [3, 4, 6, 9, 12]
x3= [5, 8, 12]
y3= [3, 6, 9]
x4= [7, 8, 15]
y4= [6, 12, 18]
**# Plot graph**
fig, ax = plt.subplots(2, 2)
ax[0, 0].set_facecolor('cyan')
**# Set axis for rotation**
ax[0,0].set_xticklabels([0.2, 0.4, 0.6, 0.8, 1], rotation = 30)
ax[0, 0].plot(x1, y1)
ax[0, 1].plot(x2, y2)
ax[1, 0].plot(x3, y3)
ax[1, 1].plot(x4,y4)
**# Display graph**
fig.tight_layout()
plt.show()

In the above example, we use the **set_xticklabels()** method to rotate the x-axis of 1st subplot at **30 degrees** angle rotation.

Read: Matplotlib best fit line

## Matplotlib rotate tick label colorbar

The Colorbar is the map of data values of colors. The **colorbar()** method is used to add a colorbar to the graph.

If we want to rotate axes of the color bar for better visualization we have two methods as follow:

**cbar.ax.set_xticklabels:**if the orientation of colorbar is horizontal.**cbar.ax.set_yticklabels:**if the orientation of colorbar is vertical.

### Matplotlib rotate tick label colobar horizontal

Here, we will learn how to rotate colorbar axis of the bar horizontal placed.

**The syntax for this is given below:**

`cbar.ax.set_xticklabels(labels, rotation)`

**The parameters used above are:**

**labels:**specifies labels of colorbar**rotation:**specifies the angle of rotation

**Let’s take an example to understand how to do rotation:**

**# Import libraries**
import matplotlib.pyplot as plt
import numpy as np
**# Plot image**
a = np.random.random((5, 5))
plt.imshow(a, cmap='summer')
**# Plot horizontal colorbar**
cbar = plt.colorbar(
orientation="horizontal")
**# Set ticklabels**
labels = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1]
cbar.set_ticks(labels)
**# Rotate x tick labels**
cbar.ax.set_xticklabels(labels, rotation=40)
**#Plot graph**
plt.show()

- In the above example, we import library matplotlib and numpy. Then we plot data using numpy.
- After that, we set the orientation to
**“horizontal”**and use the**set_xticklabels()**method to set the rotation angle to**40 degrees**.

### Matplotlib rotate tick label colobar vertical

Here, we will learn how to rotate colorbar axis of the bar vertically placed.

**The syntax for this is given below:**

`cbar.ax.set_yticklabels(labels, rotation)`

**The parameters used above are:**

**labels:**specifies labels of colorbar**rotation:**specifies the angle of rotation

**Let’s take an example to understand how to do rotation:**

**# Import libraries**
import matplotlib.pyplot as plt
import numpy as np
**# Plot image**
a = np.random.random((5, 5))
plt.imshow(a, cmap='summer')
**# Plot vertical colorbar**
cbar = plt.colorbar(
orientation="vertical")
**# Set ticklabels**
labels = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1]
cbar.set_ticks(labels)
**# Rotate y tick labels**
cbar.ax.set_yticklabels(labels, rotation=40)
**# Plot graph **
plt.show()

- In the above example, we import library matplotlib and numpy. Then we plot data using numpy.
- After that, we set the orientation to
**“vertical”**and use the**set_yticklabels()**method to set the rotation angle to**40 degrees**.

Read: Matplotlib subplots_adjust

## Matplotlib rotate tick labels 45 degrees

In this section, we are going to study how we rotate X-ticks and Y-ticks in a plotted at a specific angle of 45 degrees.

The main reason behind the rotation of ticks is to avoid overlapping and for a clear view of the graph axis.

Here we will study three cases of rotation of tick labels at 45 degrees.

**1st:**We study how to rotate X-axis tick labels at 45 degrees.**2nd:**We study how to rotate Y-axis tick labels at 45 degrees.**3rd:**We study how to rotate X-axis and Y-axis tick labels at 45 degrees at a time.

**The syntax to rotate tick labels at 45 degrees is as below:**

`Matplotlib.pyplot.xticks(rotation = 45)`

**Let’s understand the concept more clearly with the help of an example:**

**Case#1** (Rotation of X tick labels)

**# Import Libraries
**
import matplotlib.pyplot as plt
**# Define data
**
x = [1, 2, 3, 4]
y = [8, 16, 20, 12]
**# Create plot**
plt.plot(x, y, color='orange')
**# Rotate X-axis tick labels**
plt.xticks(rotation=45)
**# Display the Graph**
plt.show()

- Import the library
**matplotlib.pyplot**for visualization of data. - Define data the X-axis and Y-axis and create a plot by using the
**plt.plot()**method. - Set xticks label rotation at 45 degrees by using
**plt.xticks()**method and set**rotation= 45**as the argument in the method. - Finally, display the figure by using the
**plt.show()**method.

**Case#2** (Rotation of Y tick labels)

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data**
x = [1, 2, 3, 4]
y = [8, 16, 20, 12]
**# Create plot**
plt.plot(x, y, color='orange')
**# Rotate Y-axis tick labels**
plt.yticks(rotation=45)
**# Display the Graph**
plt.show()

- Import the library
**matplotlib.pyplot**for visualization of data. - Define data the X-axis and Y-axis and create a plot by using the
**plt.plot()**method. - Set xticks label rotation at 45 degrees by using
**plt.yticks()**method and set**rotation= 45**as the argument in the method. - Finally, display the figure by using the
**plt.show()**method.

**Case#3** (Rotation of both tick labels)

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data
**
x = [1, 2, 3, 4]
y = [8, 16, 20, 12]
**# Create plot**
plt.plot(x, y, color='orange')
**# Rotate X-axis and Y-axis tick labels**
plt.xticks(rotation=45)
plt.yticks(rotation=45)
**# Display the Graph**
plt.show()

- Import the library
**matplotlib.pyplot**for visualization of data. - Define data the X-axis and Y-axis and create a plot by using the
**plt.plot()**method. - Set xticks and yticks label rotation at 45 degrees by using
**plt.xticks()**and**plt.yticks()**method for the x-axis and y-axis respectively and set**rotation= 45**as the argument in the method. - In last, display the figure by using the
**plt.show()**method.

Read: Matplotlib log log plot

## Matplotlib rotate tick labels 90 degrees

In this section, we are going to study how we rotate X-ticks and Y-ticks in a plotted at a specific angle of 90 degrees.

The main reason behind the rotation of ticks is to avoid overlapping and for a clear view of the graph axis.

Here we study three cases of rotation of tick labels at 90 degrees.

**1st:**We study how to rotate X-axis tick labels at 90 degrees.**2nd:**We study how to rotate Y-axis tick labels at 90 degrees.**3rd:**We study how to rotate X-axis and Y-axis tick labels at 90 degrees at a time.

**The syntax to rotate tick labels at 90 degrees is as below:**

`Matplotlib.pyplot.xticks(rotation = 90)`

**Let’s understand the concept more clearly with the help of an example:**

**Case#1** (Rotation of X tick labels)

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data
**
x = [5, 6, 7, 8]
y = [8, 16, 20, 12]
**# Create plot**
plt.plot(x, y)
**# Rotate X-axis tick labels**
plt.xticks(rotation=90)
**# Display the Graph**
plt.show()

- Import the library
**matplotlib.pyplot**for visualization of data. - Define data the X-axis and Y-axis and create a plot by using the
**plt.plot()**method. - Set xticks label rotation at 90 degrees by using
**plt.xticks()**method and set**rotation= 90**as the argument in the method. - Finally, display the figure by using the
**plt.show()**method.

**Case#2** (Rotation of Y tick labels)

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data**
x = [5, 6, 7, 8]
y = [8, 16, 20, 12]
**# Create plot**
plt.plot(x, y)
**# Rotate Y-axis tick labels**
plt.yticks(rotation=90)
**# Display the Graph
**
plt.show()

- Import the library
**matplotlib.pyplot**for visualization of data. - Define data the X-axis and Y-axis and create a plot by using the
**plt.plot()**method. - Set xticks label rotation at 90 degrees by using
**plt.yticks()**method and set**rotation= 90**as the argument in the method. - Finally, display the figure by using the
**plt.show()**method.

**Case#3** (Rotation of both tick labels)

**# Import Libraries
**
import matplotlib.pyplot as plt
**# Define data
**
x = [5, 6, 7, 8]
y = [8, 16, 20, 12]
**# Create plot
**
plt.plot(x, y)
**# Rotate X-axis and Y-axis tick labels
**
plt.xticks(rotation=90)
plt.yticks(rotation=90)
**# Display the Graph
**
plt.show()

- Import the library
**matplotlib.pyplot**for visualization of data. - Define data the X-axis and Y-axis and create a plot by using the
**plt.plot()**method. - Set xticks and yticks label rotation at 90 degrees by using
**plt.xticks()**and**plt.yticks()**method for the x-axis and y-axis respectively and set**rotation= 90**as the argument in the method. - In last, display the figure by using the
**plt.show()**method.

Read: Matplotlib plot_date

## Matplotlib rotate tick labels alignment

In this section, we are going to study how to align tick labels. We can say that how we will arrange tick labels in different positions.

For alignment of tick labels, we use the **‘ha’** argument which means “**Horizontal alignment**” and we pass this argument to **xticks()** and **yticks()** method.

**We can align tick labels in the following positions as given below:**

**ha=’right’:**specifies that tick labels align at the right end.**ha=’center’:**specifies that tick labels align at the center.**ha=’left’:**specifies that tick labels align at the left end.

**Let’s understand each alignment case properly:**

### Matplotlib rotate tick label alignment right

We are going to study how to align tick labels at the right end.

**The syntax for right alignment is as given below:**

**# For x-axis**
matplotlib.pyplot.xticks(ha='right')
**# For y-axis**
matplotlib.pyplot.yticks(ha='right')

**Let’s see an example related to right alignment:**

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data**
x = [2, 4, 6, 8]
y = [8, 16, 20, 12]
**# Create plot**
plt.plot(x, y)
**# Right align X-axis tick labels
**
plt.xticks(ha='right')
**# OR**
**# Right align Y-axis tick labels**
plt.yticks(ha='right')
**# Display the Graph**
plt.show()

- Import the library
**matplotlib.pyplot**for visualization of data. - Define data the X-axis and Y-axis and create a plot by using the
**plt.plot()**method. - Set xticks label rotation alignemnt at right end by using
**plt.xticks()**with parameter**ha=’right’**. - And If you want to aligne yaxis tick label use the method
**plt.yticks()**and pass the parameter**ha=’right’**. - In last, display the figure by using the
**plt.show()**method.

### Matplotlib rotate tick label alignment center

We are going to study how to align tick labels at the center.

**The syntax for center alignment is as given below:**

**# For x-axis label**
matplotlib.pyplot.xticks(ha='center')
**# For y-axis label**
matplotlib.pyplot.yticks(ha='center')

**Let’s see an example related to center alignment:**

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data**
x = [2, 4, 6, 8]
y = [8, 16, 20, 12]
**# Create plot**
plt.plot(x, y)
**# Center align X-axis tick labels
**plt.xticks(ha='center')
**# OR**
**# Center align Y-axis tick labels**
plt.yticks(ha='center')
**# Display the Graph**
plt.show()

- Import the library
**matplotlib.pyplot**for visualization of data. - Define data the X-axis and Y-axis and create a plot by using the
**plt.plot()**method. - Set xticks label rotation alignemnt at center by using
**plt.xticks()**with parameter**ha=’center’**. - And If you want to aligne yaxis tick label use the method
**plt.yticks()**and pass the parameter**ha=’center’**. - In last, display the figure by using the
**plt.show()**method.

### Matplotlib rotate tick label alignment left

We are going to study how to align tick labels at the left end.

**The syntax for left alignment is as given below:**

**# For x-axis label**
matplotlib.pyplot.xticks(ha='left')
**# For y-axis label**
matplotlib.pyplot.yticks(ha='left')

**Let’s see an example related to left alignment:**

**# Import Libraries**
import matplotlib.pyplot as plt
**# Define data**
x = [2, 4, 6, 8]
y = [8, 16, 20, 12]
**# Create plot**
plt.plot(x, y)
**# Left align X-axis tick labels
**plt.xticks(ha='left')
**# OR**
**# Left align Y-axis tick labels**
plt.yticks(ha='left')
**# Display the Graph**
plt.show()

- Import the library
**matplotlib.pyplot**for visualization of data. - Define data the X-axis and Y-axis and create a plot by using the
**plt.plot()**method. - Set xticks label rotation alignemnt at left end by using
**plt.xticks()**with parameter**ha=’left’**. - And If you want to aligne yaxis tick label use the method
**plt.yticks()**and pass the parameter**ha=’left’**. - In last, display the figure by using the
**plt.show()**method.

You may like to read more on Matplotlib.

In this Python tutorial, we have discussed the “**Matplotlib rotate tick labels**” and we have also covered some examples related to it. These are the following topics that we have discussed in this tutorial.

- Matplotlib rotate tick labels
- Matplotlib rotate tick labels example
- Matplotlib rotate tick labels x-axis
- Matplotlib rotate tick labels y-axis
- Matplotlib rotate tick labels date
- Matplotlib rotate tick labels colorbar
- Matplotlib rotate tick labels 45 degrees
- Matplotlib rotate tick labels 90 degrees
- Matplotlib rotate tick labels alignment

Python is one of the most popular languages in the United States of America. I have been working with Python for a long time and I have expertise in working with various libraries on Tkinter, Pandas, NumPy, Turtle, Django, Matplotlib, Tensorflow, Scipy, Scikit-Learn, etc… I have experience in working with various clients in countries like United States, Canada, United Kingdom, Australia, New Zealand, etc. Check out my profile.